Table 2G-1. Type S Probe Inspection Sheet

Note: Method 2 provides the criteria for an acceptably constructed Type S pitot tube. However, the procedure for making the necessary measurements is not specified. One approach is given below.

1. Use a vise with parallel and perpendicular faces. Use an angle-measuring device (analog or digital) for this check.
2. Place the pitot tube in the vise, and level the pitot tube horizontally using the angle-measuring device.
3. Place the angle-measuring device as shown below.
4. Measure distance A, which is P_{A} plus P_{B}. Method 2 specifies that $P_{A}=P_{B}$, but provides no tolerance for this measurement. Because this measurement is very difficult, it is suggested that $P_{A}=P_{B}=A / 2$.
5. Measure the external tube diameter $\left(D_{t}\right)$ with a micrometer, machinist's rule, or internal caliper.
6. Record all data as shown on the form below.
7. Calculate dimensions w and z as shown below.

 Degree indicating level position for determining α_{1} and α_{2} Degree indicating level position for determining β_{1} and β_{2} Degree indicating level position for determining θ for determining γ, then calculating z .	Level and perpendicular?	
	Obstruction?	
	Damaged?	
	$\alpha_{1} \quad\left(-2^{\circ} \leq \alpha_{1} \leq+2^{\circ}\right)$	
	$\alpha_{2} \quad\left(-2^{\circ} \leq \alpha_{2} \leq+2^{\circ}\right)$	
	$\beta_{1} \quad\left(-2^{\circ} \leq \beta_{1} \leq+2^{\circ}\right)$	
	$\beta_{2} \quad\left(-2^{\circ} \leq \beta_{2} \leq+2^{\circ}\right)$	
	γ	
	θ	
	$\begin{aligned} & \mathrm{z}=\mathrm{A}(\tan \gamma) \\ & \quad[\leq 0.5 \mathrm{~mm}(0.02 \mathrm{in} .)] \end{aligned}$	
	$\begin{aligned} & \mathrm{w}=\mathrm{A}(\tan \theta) \\ & \quad[\leq 0.5 \mathrm{~mm}(0.02 \mathrm{in} .)] \end{aligned}$	
	$\mathrm{D}_{\mathrm{t}} \quad[\geq 9.5 \mathrm{~mm}(3 / 8 \mathrm{in})$.	
	A	
	$\mathrm{A} / 2 \mathrm{D}_{\mathrm{t}}\left(1.05 \leq \mathrm{P}_{\mathrm{A}} / \mathrm{D}_{\mathrm{t}} \leq 1.5\right) *$	
	* Recommended dimensions	

QA/QC Check

Completeness
 \qquad

Specifications
Legibility \qquad Accuracy \qquad

Certification

I certify that the Type S probe ID \qquad meets or exceeds all specifications, criteria, and applicable design features.

Certified by: \qquad Date: \qquad

Table 2G-2. Rotational Position Check

Source: \qquad Date: \qquad
Test Location: \qquad Tester(s): \qquad
Probe Type: \qquad Affiliation: \qquad
Probe ID: \qquad Fully-Assembled Probe Length in mm (in.): \qquad

Position	Angle Comparisons		
Distance of $2^{\text {nd }}$ measurement device from probe head impact port in mm (in.)	$1^{\text {st }}$ Device Angle measured by device aligned on the reference scribe line, including algebraic sign (degrees)	$2^{\text {nd }}$ Device Angle measured by device mounted at each position to be used during testing, including algebraic sign (degrees)	$\underline{\mathbf{R}}_{\text {ADO }}$ Difference between readings by $1^{\text {st }}$ and $2^{\text {nd }}$ anglemeasuring devices (degrees) ${ }^{\text {a }}$
(Col. A)	(Col. B)	(Col. C)	(Col. C - Col. B)

${ }^{\text {a }}$ The algebraic sign must be consistent with section 8.3.2.
Specifications: For the pre-test rotational position check, the value of $\mathrm{R}_{\mathrm{ADO}}$ at each location along the probe shaft must be determined to within $\pm 1^{\circ}$. In the post-test check, $R_{A D O}$ at each location must remain within $\pm 2^{\circ}$ of the value obtained in the pre-test check.

Table 2G-3. Example EPA Method 2G Field Data Form

Table 2G-4. Wind Tunnel Velocity Pressure Cross-Check
Wind Tunnel Facility: \qquad
Date: \qquad
Wind Tunnel Temperature: \qquad
Barometric Pressure: \qquad
Test Point Locations: \qquad
Lowest Test Velocity in $\mathrm{m} / \mathrm{sec}$ (ft/sec): \qquad
Highest Test Velocity in m/sec (ft/sec):

Measurements must be taken at all points in the calibration location as specified in section 10.1.1
** Percent Difference $=\frac{\text { (Calibration Location Test Point Avg - Cal. Pitot Tube Location Avg) }}{\text { Cal. Pitot Tube Location Avg }} \times 100 \%$
Specification: At each velocity setting, the average velocity pressure obtained at the calibration location shall be within ± 2 percent or $0.01 \mathrm{in} . \mathrm{H}_{2} \mathrm{O}$, whichever is less restrictive, of the average velocity pressure obtained at the fixed calibration pitot tube location.

Table 2G-5. Wind Tunnel Axial Flow Verification

Wind Tunnel Facility: \qquad
Date:
Tunnel Temperature:
Wind Tunnel Temperature:
Barometric Pressure:
Probe Type/I.D. Used To Conduct Check: \qquad
Test Point Locations:
Lowest Test Velocity in m/sec (ft/sec):
Highest Test Velocity in $\mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})$: \qquad

Port		@ Lowest Test Velocity		@ Highest Test Velocity	
		Yaw Angle * (degrees)	Pitch Angle * (degrees)	Yaw Angle * (degrees)	Pitch Angle * (degrees)
Calibration Location	1				
	2				
	3				
	..				
Calibration Pitot Tube Location					

* When following the procedures in section 10.1.2.1, both the yaw and pitch angles are obtained from the same port. When following the procedures in section 10.1.2.2, the yaw angle is obtained using the port for the tested probe, and the pitch angle is obtained using the port for verification of axial flow.
** Yaw and pitch angle measurements must be taken at all points that define the calibration location (as per the requirements in section 10.1.1)

Specification: At each velocity setting, each measured yaw and pitch angle shall be within $\pm 3^{\circ}$ of 0° in accordance with the requirements in section 10.1.2.

Table 2G-6. Yaw Angle Calibration

Probe Type: \qquad Tester(s): \qquad
Probe ID: \qquad Affiliation: \qquad
Test Location: \qquad Date: \qquad

* Include magnitude and algebraic sign in accordance with section 10.5.6.

Table 2G-7. Determining the Magnitude of Reference Scribe Line Offset

Probe/Angle-Measuring Device	Magnitude of $\mathbf{R}_{\text {SLo }}$
Type S probe with inclinometer	$\theta_{\text {null }}$
Type S probe with protractor wheel and pointer	$90^{\circ}-\theta_{\text {null }}$
3-D probe with inclinometer	$90^{\circ}-\theta_{\text {null }}$
3-D probe with protractor wheel and pointer	$\theta_{\text {null }}$

Table 2G-8. Probe Calibration for Method 2G
Wind Tunnel Facility:
Wind Tunnel Location:
\qquad

Probe Type: \qquad
Probe ID: \qquad
Probe Calibration Date: \qquad
Test Point Location: \qquad
Ambient Temperature (${ }^{\circ} \mathrm{F}$): \qquad
Barometric Pressure ($\mathrm{P}_{\mathrm{bar}}$): \qquad

Repetition	Low Velocity Setting (ft/sec)	Calibration Pitot		Tested Probe		$\begin{gathered} \text { Calculated } \\ \mathrm{C}_{\mathrm{p}} \text { or } \mathrm{F}_{2} \end{gathered}$
		$\begin{gathered} \Delta \mathbf{P}_{\text {std }} \\ \text { (in. } \left.\mathbf{H}_{2} \mathbf{O}\right) \end{gathered}$	Temp. $\left({ }^{\circ} \mathrm{F}\right)$	$\begin{gathered} \Delta P \text { or } \mathrm{P}_{1}-\mathrm{P}_{2} \\ \left(\text { in. } \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	Yaw Angle ${ }^{\circ}$)	
1						
2						
3						
Average $\left(\mathrm{C}_{\mathrm{p} \text { (avg-low) }}\right)=$						

Repetition	High Velocity Setting (ft/sec)	Calibration Pitot		Teste	robe	Calculated C_{p} or F_{2}
		$\begin{gathered} \Delta \mathbf{P}_{\text {std }} \\ \text { (in. } \left.\mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	Temp. $\left({ }^{\circ} \mathrm{F}\right)$	$\begin{gathered} \Delta P \text { or } P_{1}-P_{2} \\ \text { (in. } \left.H_{2} \mathrm{O}\right) \end{gathered}$	Yaw Angle ${ }^{\circ}$)	
1						
2						
3						
Average $\left(\mathrm{C}_{\mathrm{p} \text { (avg-high }}\right)=$						

$\%$ Difference $=\frac{C_{p(a v g-l o w)}-C_{p(a v g-h i g h)}}{C_{p(a v g-l o w)}} \times 100 \%=$ \qquad

Note: (1) The percent difference between the low and high velocity setting C_{p} values shall be within ± 3 percent.
(2) If calibrating a 3-D probe for this method, the pitch angle setting must be 0°.

