

CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 800-627-0033 www.cleanair.com

CLEANAIR LABORATORY SERVICES PRICE SCHEDULE

The following fee schedule applies for analytical work performed by Clean Air Engineering Laboratory Services.

Organic Compound Analysis

Clean Air Engineering's organic laboratory specializes in the analysis of samples collected from source and ambient test programs. CleanAir uses gas chromatographs manufactured by Hewlett Packard, Perkin Elmer and MTI coupled with flame ionization, flame photometric and thermal conductivity detectors. CleanAir requests that all sample analysis be confirmed verbally before sending samples to verify that the analysis is within our capabilities. The price schedule for organic analysis per sample is as follows:

	First Compound	Each Additional Compound
Adsorbent Tube	\$145/sample	\$80/sample
Impinger Catch	\$145/sample	\$80/sample
Tedlar Bag	\$145/sample	\$80/sample

Coating and Ink Analysis

EPA Method 24\$575/sample

Clean Air Engineering's organic laboratory regularly performs EPA Method 204f distillations on liquid coating and ink samples. Using a Roto-Vap, a liquid sample is generated that can be used to determine response factors for total hydrocarbon analyzers.

EPA Method 204a (Includes Response Factor)	\$2,250/first sample
Subsequent samples	\$350/sample
EPA Method 204f (Generation of Extract only)	\$2,250/first sample
Subsequent samples	\$155/sample
EPA Method 204f (Response Factor)	\$2,250/first sample
Subsequent samples	\$350/sample
	-
Ten or More Samples	

Clean Air Engineering's inorganic laboratory utilizes a Dionex Model ICS-90 ion chromatograph. All analyses are performed in accordance with procedures in US EPA Methodology. Full pre and post analyses calibrations are provided as part of the per project pricing. The price schedule for inorganic analysis is as follows:

Ion Chromatography - Cations

Lithium	\$54/sample
Sodium	
Potassium	\$54/sample
Ammonium	\$54/sample
Magnesium	\$54/sample
Calcium	\$54/sample

Ion Chromatography - Anions

Fluoride	\$54/sample
Chloride *	\$54/sample
Nitrite	\$54/sample
Bromide	\$54/sample
Nitrate	\$54/sample
Phosphate	\$54/sample
Sulfate	\$54/sample
	-

* Please note that BIF Method 9057 for HCl/Cl_2 calls for two sample analyses per run and would cost \$108 per run.

Titration Analysis	
Sulfur Dioxide (Method 6)	\$64/sample
Sulfuric Acid Mist (Method 8)	\$64/sample

<u>CleanAir Laboratory Services Price Schedule</u> Gravimetric Analysis

Clean Air Engineering's gravimetric laboratory performs analysis on particulate samples collected using federal and state test methods.

Gravimetrics - Method 5, Method 17, CARB Method 5

<u>Front-Half Analysis</u> Filter ¹	\$18/sample
Probe Wash	\$48/sample
Back-Half Condensables EPA Method 202	\$289/test run

Method 202 charges include all required extractions and titrimetric neutralizations. "Special" sample processing such as pressurized filtration would require extra charges.

Note: The separate pressure filtration analysis would be required for EPA Method 202 filter extracts if fiber filters are used instead of membranes for the ambient filter.

Gravimetrics - Road Silt Determinations

Road Silt determined in accordance with EPA Report 450/3-88-008 "Procedures for Sampling Surface/Bulk Materials"......\$140/sample

¹ Pricing for post-test analysis only. Tared filter media are priced separately.

CleanAir.

CleanAir Laboratory Services Price Schedule	
Gravimetrics – Tared Filter Media	
8.26 cm Diameter Filters	
934AH Glass Fiber\$39/ea	ach
QAT UP Quartz Fiber\$46/ea	ach
Teflon Fiber\$59/ea	
4.7 cm Diameter Filters	
934AH Glass Fiber	ach
QAT UP Quartz Fiber\$46/ea	ach
Teflon Fiber\$59/ea	
8" x 10" Filters (Hi-Vol Filters)	
934AH Glass Fiber\$54/ea	ach
QAT UP Quartz Fiber\$66/ea	ach
M17 Alundum Thimbles	
Alundum Thimbles\$125/ea	ach

Sorbent Trap Mercury Analysis

Preparation of Sorbent Traps	\$120/each
Trap Analysis	\$125/each

CleanAir

CleanAir Laboratory Services Price Schedule Scrubber Slurry Analyses

Typical Lime Sample Analyses

Parameter	Suggested Method of Analysis	Description of Method	Suggested Frequency	Use of Data	Analytical Cost per Sample
Slaking Rate	EPRI Method B4	Rate of temperature rise	Start and finish of each performance test run	Temperature rise rate is related to reactivity and lime quality	\$650
Grit (Inert Solids)	EPRI Method J1	Acid dissolution	Start and finish of each performance test run	High grit levels indicate poor lime quality	\$50
Weight loss-on- ignition (LOI)	EPRI Method B2	Gravimetric	Start and finish of each performance test run	Weight loss is an indirect measure of lime quality via carbonate and hydroxide content	\$75
Available lime index	EPRI Method B3	Rapid sugar test	Start and finish of each performance test run	Lime quality	\$225
Calcium and Magnesium	EPRI Method J1	EDTA Titration	Start and finish of each performance test run	Analysis is required for processes producing a usable byproduct or high magnesium lime systems	\$175
Lime slurry solids content (% by Wt)	EPRI Method F1	Gravimetric	Start and finish of each performance test run	Check density meter calibration and indicate slaker performance	\$150

CleanAir Laboratory Services Price Schedule Typical Limestone Sample Analyses

_	Suggested Method		Suggested Frequency		Analytical Cost per
Parameter	of Analysis	Description of Method	of Sampling	Use of Data	Sample
Limestone Dissolution Rate	EPRI Method B7	pH stat test followed by particle size measurement	Start and finish of each performance test run	Compared to reference to determine acceptability	\$4,250
Grindability (Bond Work Index)	EPRI Method B5	Laboratory ball mill test	Start and finish of each performance test run	Limited by specification of wet milling system design	\$1,250
Carbonate	EPRI Method N1	CO ₂ evolution, Ba(OH) ₂ absorption, Acid-base titration	Start and finish of each performance test run	Measure alkali loss in filter cake of mag-lime process; important for mag-lime or sodium systems.	\$150
Alkalinity	EPRI Method N3	Titrimetric	Start and finish of each performance test run	Measure alkali loss in filter cake of mag-lime process; important for mag-lime or sodium systems.	\$50
Inerts	EPRI Method J3	Acid dissolution - ASTM C471M can be substituted	Start and finish of each performance test run	Quality indicator; important for gysum systems	\$50
Calcium and Magnesium	EPRI Method J3	EDTA Titration	Start and finish of each performance test run	Check reagent quality	\$175
Limestone slurry solids content (% by wt)	EPRI Method F1	Gravimetric	Start and finish of each performance test run	Check density meter and indicate problems in milling circuit	\$50
Limestone slurry			Start and finish of each	Troubleshooting problems in milling circuit or process such as low utilization or poor gypsum	
particle size	EPRI Method G1	Wet sieve	performance test run	quality.	\$150

Page

CleanAir Laboratory Services Price Schedule

Typical Slurry Sample Analyses

Parameter	Suggested Method of Analysis	Description of Method	Suggested Frequency	Use of Data	Analytical Cost per Sample
рН	EPRI Method C1	2-buffer method calibration with pH meter	Start and finish of each performance test run	Troubleshoot pH meter and maintain process efficiency.	On-Site
Slurry suspended solids content	EPRI Method F1	Gravimetric - ASTM C471 can be substituted	Start and finish of each performance test run	Calibrate density meter and maintain process efficiency.	\$50
Calcium and Magnesium	EPRI Method J3	EDTA Titration	Start and finish of each performance test run	To calculate stoichiometry and monitor process chemistry.	\$175
				To calculate stoichiometry	
SO4=	EPRI Method L2	Wet chemistry methods	Start and finish of each performance test run	and monitor process chemistry.	\$125
SO₃ ⁼ , CaSO₃.1/2H₂O	EPRI Method M1	lodometric titration	Start and finish of each performance test run	To calculate stoichiometry and monitor process chemistry.	\$75
Inerts	EPRI Method J3	Acid dissolution - ASTM C471M can be substituted	Start and finish of each performance test run	Quality indicator; important for gysum systems	\$50
TDS (total dissolved solids)	EPRI Method E1	Gravimetric	Start and finish of each performance test run	Calibrate density meter for suspended solids; important for mag-lime, high chloride or suspended solids.	\$75
Carbonate	EPRI Method N1	CO ₂ evolution, Ba(OH) ₂ absorption, Acid-base titration	Start and finish of each performance test run	Measure alkali loss in filter cake of mag-lime process; important for mag-lime or sodium systems.	\$150
Chloride	EPRI Method I3	lon Chromatography on Liquid Fraction	Start and finish of each		\$55
Alkalinity	EPRI Method N3	Titrimetric	performance test run Start and finish of each performance test run	Measure alkali loss in filter cake of mag-lime process; important for mag-lime or sodium systems.	\$50

Typical DeWatering Sample Analyses

Parameter	Suggested Method of Analysis	Description of Method	Suggested Frequency	Use of Data	Analytical Cost per Sample
Thickener or hydrocyclone underfloow solids content	EPRI Method F1	Gravimetric	Start and finish of each performance test run	Troubleshoot process and calibrated lime density parameters	\$50
Supernatent, filtrant solids content (% by wt)	EPRI Method E1	Gravimetric	Start and finish of each performance test run	Monitor filter cloth status	\$75

CleanAir Laboratory Services Price Schedule

Typical Gypsum Sample Analyses

	Suggested Method	ł			Analytical Cost per
Parameter	of Analysis	Description of Method	Suggested Frequency	Use of Data	Sample
Calcium and Magnesium	EPRI Method J1	EDTA Titration	Start and finish of each performance test run	Product purities and properties	\$175
SO4=	EPRI Method L2	Wet chemistry methods	Start and finish of each performance test run	Product purities and properties	\$125
SO₃ ⁼ , CaSO₃.1/2H₂O	EPRI Method M1	lodometric titration	Start and finish of each performance test run	Product purities and properties	\$75
Moisture content	EPRI Method F1	Gravimetric - ASTM C471 can be substituted	Start and finish of each performance test run	Important for salable gypsum and monitoring dewatering system performance.	\$50
Combined water	Gravimetric	Heat to 482°F (250°C) - ASTM C471M can be Substituted.	Start and finish of each performance test run	Gypsum purity	\$50
Total water soluble salts	EPRI Method I1	Sum (Na ⁺ + K ⁺ + Mg ⁺⁺)	Start and finish of each performance test run	Product purities and properties	\$175
Inerts	EPRI Method J3	Acid dissolution - ASTM C471M can be substituted	Start and finish of each performance test run	Determined as acid insolubles along with silica (SiO ₂) and other impurities.	\$50
рН	EPRI Method C1	2-buffer method calibration with pH meter	Start and finish of each performance test run	Product purities and properties	\$75

CleanAir Laboratory Services Price Schedule

Laboratory Resistivity Determinations

Laboratory resistivity and particle size analysis of particulate can be determined to aid in improving control device performance.

<u>Complete Ash Characterization with Regard to Precipitator</u> <u>Performance</u> \$5,795/Sample This would be a fully consultative characterization that includes:

- IEEE Standard 548-1984 Round Trip Resistivity Measurements.
- Resistivity measured as a function of Applied Electric Field in a simulated flue gas environment (a given concentration of sulfuric acid vapor present along with moisture). This measurement is performed isothermally at a minimum of two temperature points.
- An ash mineral analysis
- A computer modeled resistivity prediction.
- Particle size distribution.
- Ash Morphology using Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry for chemical analysis.

Computer Model ESP Performance Predictions

Particle collection performance of an electrostatic precipitator is predicted using customersupplied precipitator mechanical and electrical data as well as coal and fly ash compositional data. Model is described in EPA-600/7-84-069 a&b and is commonly referred to as the EPA/SRI computer model. In addition to modeling the existing precipitator performance, the effects of various changes (such as coal switching and gas conditioning) can be predicted. Priced according to scope and complexity.

CleanAir

CleanAir Laboratory Services Price Schedule

Other Ash Characterization Services

Bahco particle size classification with density correction	\$595/sample
Bahco coupled with sample fraction retention	\$1,045/sample
Soluble sulfate analysis on ash	\$75/sample
Sieve analysis	\$140/sample
Loss-on-ignition (LOI)	\$75/sample
Designed resistivity tests, and consultation work are available	ble and are priced according to
scope and complexity.	

The following services are sub-contracted through other laboratories:

Ash mineral analysis and loss-on-ignition (LOI)	.\$450/sample
Short proximate, ultimate coal analysis	.\$295/sample
Scanning electron microscopy (SEM), x-ray diffraction are available	and are priced
according to scope and complexity.	

Rush Analysis Pricing

Analytical results will be issued 15 working days from the receipt of samples. Rush analytical results may be available at increased rates upon request. Rush charges for analysis will be applied in the following manner:

In any circumstance, a purchaser's request for rush analysis in a certain time frame authorizes all degrees of rush charges up to that extent. Rush charges on the final invoice will be reflective of when results were available and reported to the Purchaser. All days will be calculated on a five (5) day work week (except for holiday allowance).

All analysis will be performed in accordance with Clean Air Engineering's Terms and Conditions for Laboratory Work.